Preliminary communication

Synthesis of a derivative of D-kijanose (2,3,4,6-tetradeoxy-4-methoxy-carbonylamino-3-*C*-methyl-3-nitro-D-*xylo*-hexopyranose)

JOHN S. BRIMACOMBE* and KHANDKER M. M. RAHMAN
Chemistry Department, Dundee University, Dundee DDI 4HN (Great Britain)

(Received August 26th, 1983; accepted for publication, September 19th, 1983)

D-Kijanose ¹ (or D-tetronitrose ²) (1), a component of kijanimicin ³ and tetrocarcins A and B^{2,4}, is one of a novel group of methyl-branched nitro sugars found in antibiotic substances. We have declared ⁵ an interest in the synthesis of D-kijanose (1) by a route in which reduction of the keto sugar 2 constituted a key step. The yield of methyl 2,3,6-trideoxy-3-C-methyl-3-trifluoroacetamido- α -D-xylo-hexopyranoside (7) subsequently obtained in this step turned out to be unacceptably low, so that an alternative route was devised from the 3-acetamido analogue 3, previously used in our synthesis ^{5,6} of D-tubranitrose (4) (from rubraditin ⁷).

N-Deacetylation of 3 with calcium in liquid ammonia gave 5, which was immediately converted into 7, m.p. 79–80°, $[\alpha]_D$ +54° (c 1, chloroform), in 74% overall yield via the corresponding 4-trifluoroacetate 6. The methanolysis of 6 was markedly accelerated in the presence of silica gel. Methanesulphonylation of 7 then gave methyl 2,3,6-trideoxy-4-O-methanesulphonyl-3-C-methyl-3-trifluoroacetamido- α -D-xylo-hexopyranoside (8), m.p. 89–90°, $[\alpha]_D$ +86° (c 1.1, chloroform), in 96% yield. Treatment of 8 with sodium borohydride in anhydrous ethanol at room temperature for 3 h afforded, after chromatography on silica gel with acetone, a high yield of methyl 2,3,4,6-tetradeoxy-3,4-epimino-3-C-methyl- α -D-ribo-hexopyranoside (9), $[\alpha]_D \sim$ +76° (c 0.8, diethyl ether), as a volatile oil contaminated with traces of solvent**. In this step, reductive cleavage of the N-trifluoroacetyl group from 8 is followed by intramolecular displacement of the methanesulphonyloxy group by the amino group so exposed.

Opening of the aziridine ring of 9 with sodium azide in refluxing aqueous ethanol containing ammonium chloride furnished, after chromatography on silica gel with ethyl acetate, methyl 3-amino-4-azido-2,3.4,6-tetradeoxy-3-C-methyl- α -D-xylo-hexopyranoside (11,35.5%), m.p. 38–39°, $[\alpha]_D$ +204° (c 0.6, chloroform), and its regioisomer 10 (8.3%). The p.m.r. spectrum of 11 $\{lit.^{10}$ m.p. 37.5–38.5°, $[\alpha]_D$ +186.5° (chloroform) was indistinguishable from that reported in connection with a synthesis of methyl α -D-kijanoside (12), which confirmed that natural kijanose (1) belongs to the D series. Whereas the combined yield of 10 and 11 is comparable to that obtained from 9 by the Japanese workers, the proportion of the desired regioisomer 11 is decidedly more

^{*}To whom enquiries should be addressed.

^{**}Attempts to remove the last traces of solvent from 9 under reduced pressure resulted in severe loss of material.

favourable than that (10:11,2:3) reported ¹⁰. Since 11, in which the nitrogen functionalities can be manipulated independently, has already been transformed ¹⁰ into methyl α -D-kijanoside (12), the above sequence constitutes a formal synthesis of this rare-sugar derivative.

One notable advantage of our approach, which differs from that previously described 10 (from methyl &-D-mycaroside), is that derivatives of both D-kijanose and D-rubranitrose 6 (4) are accessible from the same precursor 3° .

New compounds had elemental analyses and/or spectroscopic properties in agreement with the structures assigned.

ACKNOWLEDGMENTS

We thank the University of Chittagong for study leave (to K. M. M. R.), and the Commonwealth Scholarship Commission in the United Kingdom for financial support.

REFERENCES

- 1 A. K. Mallams, M. S. Puar, and R. R. Rossman, J. Am. Chem. Soc., 103 (1981) 3938-3940.
- F. Tomita, T. Tamaoki, K. Shirahata, M. Kasai, M. Morimoto, S. Ohkubo, K. Mineura, and S. Ishii, J. Antibiot., 33 (1980) 668-670; T. Tamaoki, M. Kasai, K. Shirahata, S. Ohkubo, M. Morimoto, K. Mineura, S. Ishii, and F. Tomita, thid., 33 (1980) 946-950.
- 3 A. K. Mallams, M. S. Puar, R. R. Rossman, A. T. McPhail, and R. D. Macfarlane, J. Am. Chem. Soc., 103 (1981) 3940-3943; A. K. Mallams, M. S. Puar, R. R. Rossman, A. T. McPhail, R. D. Macfarlane, and R. L. Stephens, J. Chem. Soc., Perkin Trans. 1, (1983) 1497-1534.
- 4 N. Hirayama, M. Kasai, K. Shirahata, Y. Ohashi, and Y. Sasada, Tetrahedron Lett., (1980) 2559-2560.
- 5 J. S. Brimacombe and K. M. M. Rahman, Carbohydr. Res., 113 (1983) C6-C9.
- 6 J. S. Brimacombe and K. M. M. Rahman, Carbohydr. Res., 114 (1983) C1-C2.
- H. Hoeksema, S. A. Mizsak, L. Baczynskyj, and L. M. Pschigoda, J. Am. Chem. Soc., 104 (1982) 5173-5181.
- G. Stork, S. D. Darling, I. T. Harrison, and P. S. Wharton, J. Am. Chem. Soc., 84 (1962)
 2018-2020; A. J. Pearson and D. C. Rees, J. Chem. Soc., Perkin Trans. 1, (1982) 2467-2476.
- 9 G. Swift and D. Swern, J. Org. Chem., 32 (1967) 511 -517.
- 10 K. Funaki, K. Takeda, and E. Yoshii, Tetrahedron Lett., (1982) 3069-3072.